Packing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e96" altimg="si24.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-coloring of subcubic outerplanar graphs

نویسندگان

چکیده

For 1≤s1≤s2≤…≤sk and a graph G, packing (s1,s2,…,sk)-coloring of G is partition V(G) into sets V1,V2,…,Vk such that, for each 1≤i≤k the distance between any two distinct x,y∈Vi at least si+1. The chromatic number, χp(G), smallest k that has (1,2,…,k)-coloring. It known there are trees maximum degree 4 subcubic graphs with arbitrarily large χp(G). Recently, was series papers on (s1,s2,…,sk)-colorings in various classes. We show every 2-connected outerplanar (1,1,2)-coloring (1,1,2,4)-colorable. Our results sharp sense not (1,1,3)-colorable (1,1,2,5)-colorable. also (1,2,2,4)-colorable (1,1,3,4)-colorable.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On packing chromatic number of subcubic outerplanar graphs

The question of whether subcubic graphs have finite packing chromatic number or not is still open although positive responses are known for some subclasses, including subcubic trees, base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the question for some subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the weak ...

متن کامل

Coloring Algorithms on Subcubic Graphs

We present efficient algorithms for three coloring problems on subcubic graphs. (A subcubic graph has maximum degree at most three.) The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and appears to be simpler than previous ones. The second algorithm is the first randomized EREW PRAM algorithm for the same problem. It uses O(n...

متن کامل

On Oriented Arc-Coloring of Subcubic Graphs

A homomorphism from an oriented graph G to an oriented graph H is a mapping φ from the set of vertices of G to the set of vertices of H such that −−−−−→ φ(u)φ(v) is an arc in H whenever −→uv is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (Reca...

متن کامل

List-Coloring Squares of Sparse Subcubic Graphs

The problem of colouring the square of a graph naturally arises in connection with the distance labelings, which have been studied intensively. We consider this problem for sparse subcubic graphs and show that the choosability χ`(G 2) of the square of a subcubic graph G of maximum average degree d is at most four if d < 24/11 and G does not contain a 5-cycle, χ`(G 2) is at most five if d < 7/3 ...

متن کامل

Acyclic edge coloring of subcubic graphs

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2021

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2021.05.031